You know that there is no term for C(s) in this expression because	
The concentration of hydrogen gas is squared because	

You already have the values of the equilibrium constant and the hydrogen gas concentration. From this information, make use of the equilibrium expression to determine the unknown concentration.

Work a Solution

Since you are solving for the methane concentration, rearrange the equilibrium expression so that methane is isolated on the left side of the equation.

$$[CH_4] = K_{eq} \times \underline{\hspace{1cm}}$$

Substitute the numbers given above and use your calculator to determine the value of [CH₄].

$$[CH_4] = (8.1 \times 10^8) \times (1.00 \times 10^{-5})^2 = \underline{\qquad} M$$

Verify Your Answer

Verify your answer by working the problem backward. Plug each concentration into the equilibrium expression. Does this value of *K* match the one given for the reaction?

$$K = \frac{\left[\text{CH}_4 \right]}{\left[\text{H}_2 \right]^2} = \frac{\left[\underline{} \right]^2}{\left[\underline{} \right]^2} = \underline{}$$

For more practice with equilibrium problems, see Example Problems 18-1, 18-2, and 18-3 in your text.

Problems

For each of the following problems, write your solutions on a separate sheet of paper to be turned in with this worksheet. Write your answers in the spaces provided.

- 1. The value of the equilibrium constant for the reaction, $COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$, is 8.2×10^{-2} at 627°C. If the equilibrium concentrations of CO and Cl₂ are each 0.50M, what is the equilibrium concentration of $COCl_2$?
- 2. The value of the equilibrium constant for the reaction, $CaSO_4(s) \rightleftharpoons Ca^{2+}(aq) + SO_4^{2-}(aq)$, is 2.4×10^{-5} . If the equilibrium concentration of the sulfate ion is 0.025M, what is the equilibrium concentration of the calcium ion?

Critical Thinking

Use the reaction, $2H_2O(1) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$, to answer these questions on your solution sheets. The equilibrium constant is 1.0×10^{-14} .

- 3. A solution is said to be acidic if $[H_3O^+] > [OH^-]$ and is said to be basic if $[H_3O^+] < [OH^-]$. Calculate the concentration of H_3O^+ in a solution in which (A) the concentration of OH^- is 2.5×10^{-1} M and (B) the concentration of OH^- is 2.5×10^{-4} M. Are these solutions acidic or basic?
- 4. Using LeChâtelier's principle, explain why the H₃O⁺ concentration in the last question was greater for Solution B than for Solution A.