| You know that there is no term for C(s) in this expression because | | |--|--| | The concentration of hydrogen gas is squared because | | You already have the values of the equilibrium constant and the hydrogen gas concentration. From this information, make use of the equilibrium expression to determine the unknown concentration. ## **Work a Solution** Since you are solving for the methane concentration, rearrange the equilibrium expression so that methane is isolated on the left side of the equation. $$[CH_4] = K_{eq} \times \underline{\hspace{1cm}}$$ Substitute the numbers given above and use your calculator to determine the value of [CH₄]. $$[CH_4] = (8.1 \times 10^8) \times (1.00 \times 10^{-5})^2 = \underline{\qquad} M$$ ## **Verify Your Answer** **Verify your answer** by working the problem backward. Plug each concentration into the equilibrium expression. Does this value of *K* match the one given for the reaction? $$K = \frac{\left[\text{CH}_4 \right]}{\left[\text{H}_2 \right]^2} = \frac{\left[\underline{} \right]^2}{\left[\underline{} \right]^2} = \underline{}$$ For more practice with equilibrium problems, see Example Problems 18-1, 18-2, and 18-3 in your text. ## Problems For each of the following problems, write your solutions on a separate sheet of paper to be turned in with this worksheet. Write your answers in the spaces provided. - 1. The value of the equilibrium constant for the reaction, $COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$, is 8.2×10^{-2} at 627°C. If the equilibrium concentrations of CO and Cl₂ are each 0.50M, what is the equilibrium concentration of $COCl_2$? - 2. The value of the equilibrium constant for the reaction, $CaSO_4(s) \rightleftharpoons Ca^{2+}(aq) + SO_4^{2-}(aq)$, is 2.4×10^{-5} . If the equilibrium concentration of the sulfate ion is 0.025M, what is the equilibrium concentration of the calcium ion? ## Critical Thinking Use the reaction, $2H_2O(1) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$, to answer these questions on your solution sheets. The equilibrium constant is 1.0×10^{-14} . - 3. A solution is said to be acidic if $[H_3O^+] > [OH^-]$ and is said to be basic if $[H_3O^+] < [OH^-]$. Calculate the concentration of H_3O^+ in a solution in which (A) the concentration of OH^- is 2.5×10^{-1} M and (B) the concentration of OH^- is 2.5×10^{-4} M. Are these solutions acidic or basic? - 4. Using LeChâtelier's principle, explain why the H₃O⁺ concentration in the last question was greater for Solution B than for Solution A.